



TESNIT® BA-HF is gasket material with controlled swell properties and is suitable for light-to-medium loads. Very suitable material to compensate irregularities on flange surfaces.

## **PROPERTIES**

| Composition            | Aramid and glass fibers, NR.                                              |
|------------------------|---------------------------------------------------------------------------|
| Colour                 | Red                                                                       |
| Properties             | Good resistance to water, steam, air, gases and non-<br>aggressive media. |
| Appropriate industries | Water supply industry, gas supply industry                                |

| SURFACE TREATMENTS                                                                                           | DIMENSIONS OF STANDARD SHEETS                                                                                                             |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Surface treatment is 2AS.<br>Other surface treatments such as graphite and<br>PTFE are available on request. | Sheet size (mm): 1500 x 1500<br>Thickness (mm): 0.5   1.0   1.5   2.0   3.0<br>Other dimensions and thicknesses are available on request. |
|                                                                                                              | <b>Tolerances:</b><br>+/- 5 % on length and width<br>On thickness up to 1.0 mm +/- 0.1 mm<br>On thickness above 1.0 mm +/- 10 %           |

## TECHNICAL DATA Typical values for a thickness of 2 mm

| Density                                                               | DIN 28090-2 | g/cm³    | 1.7     |
|-----------------------------------------------------------------------|-------------|----------|---------|
| Compressibility                                                       | ASTM F36J   | %        | 15      |
| Recovery                                                              | ASTM F36J   | %        | 55      |
| Tensile strength                                                      | ASTM F152   | MPa      | 9       |
| Stress resistance                                                     | DIN 52913   |          |         |
| 16 h, 50 MPa, 175 °C                                                  |             | МРа      | 15      |
| 16 h, 50 MPa, 300 °C                                                  |             | МРа      | /       |
| Specific leak rate                                                    | DIN 3535-6  | mg/(s·m) | 0.02    |
| Thickness increase                                                    | ASTM F146   |          |         |
| Oil IRM 903, 5 h, 150 °C                                              |             | %        | 50      |
| ASTM Fuel B, 5 h, 23 °C                                               |             | %        | 32      |
| Compression modulus                                                   | DIN 28090-2 |          |         |
| At room temperature: $\boldsymbol{\mathcal{E}}_{	extsf{ksw}}$         |             | %        | /       |
| At elevated temperature: $\epsilon_{_{	ext{WSW}/200^{\circ}	ext{C}}}$ |             | %        | /       |
| Percentage creep relaxation                                           | DIN 28090-2 |          |         |
| At room temperature: $\boldsymbol{\epsilon}_{_{KRW}}$                 |             | %        | /       |
| At elevated temperature: $m{arepsilon}_{_{WRW/200^{\circ}C}}$         |             | %        | /       |
| Max. operating conditions                                             |             |          |         |
| Peak temperature                                                      |             | °C/°F    | 220/428 |
| Continuous temperature                                                |             | °C/°F    | 200/392 |
| - with steam                                                          |             | °C/°F    | 170/338 |
| Pressure                                                              |             | bar/psi  | 40/580  |

## **CHEMICAL RESISTANCE CHART**

The recommendations made here are intended to be a guideline for the selection of the suitable gasket quality. Because the function and durability of the products depend upon a number of factors, the data may not be used to support any warranty claims.

|                      |   |                                      | -         |                        |
|----------------------|---|--------------------------------------|-----------|------------------------|
| Acetamide            | Ð | Ethyl acetate                        | 0         | Oleum                  |
| Acetic acid 10%      | • | Ethyl alcohol                        | •         | Oxalic acid            |
| Acetic acid 100%     | • | Ethyl chloride                       |           | Oxygen                 |
| Acetic ester         | 0 | Ethylene                             | •         | Palmitic acid          |
| Acetone              | 0 | Ethylene glycol                      | •         | Pentane                |
| Acetylene            | • | Formic acid 10%                      | •         | Perchloroethylene      |
| Adipic acid          | • | Formic acid 85%                      | 0         | Pheno                  |
| Air                  | • | Formaldehyde                         | •         | Phosphoric acid        |
| Alum                 | • | Freon 12                             |           | Potassium acetate      |
| Aluminium acetate    | • | Freon 22                             |           | Potassium bicarbonate  |
| Aluminium chlorate   | Ð | Fuel oil                             | 0         | Potassium carbonate    |
| Aluminium chloride   | • | Gasoline                             | •         | Potassium chloride     |
| Ammonia              | 0 | Glycerine                            | •         | Potassium dichromate   |
| Ammonium bicarbonate | • | Heptane                              |           | Potassium hydroxide    |
| Ammonium chloride    | • | Hydraulic oil (Mineral)              |           | Potassium iodide       |
| Ammonium hydroxide   | • | Hydraulic oil (Phosphate ester type) | 0         | Potassium nitrate      |
| Amyl acetate         | 0 | Hydraulic oil (Glycol based)         | •         | Potassium permanganate |
| Aniline              | • | Hydrazine                            | •         | Propane                |
| Asphalt              | • | Hydrochloric acid 20%                | $\bullet$ | Pyridine               |
| Barium chloride      | • | Hydrochloric acid 36%                |           | R 134                  |
| Benzene              | • | Hydrofluoric acid 10%                |           | Salicylic aci          |
| Benzoic acid         | • | Hydrofluoric acid 40%                | •         | Silicone o             |
| Boric acid           | • | Hydrogen                             | •         | Soa                    |
| Borax                | • | Isobutane                            | 0         | Sodium aluminat        |
| Butane               | 0 | Isooctane                            | 0         | Sodium bicarbonat      |
| Butyl alcohol        | 0 | Isopropyl alcohol                    | •         | Sodium bisulphit       |
| Butyric acid         | 0 | Kerosene                             | Đ         | Sodium carbonat        |
| Calcium chloride     | 0 | Lead acetate                         | Ð         | Sodium chlorid         |
| Calcium hydroxide    | • | Lead arsenate                        | •         | Sodium cyanid          |
| Carbon dioxide       | Đ | Magnesium sulphate                   | •         | Sodium hydroxid        |
| Carbon disulphide    | • | Malic acid                           | •         | Sodium sulphat         |
| Chloroform           | • | Methane                              | •         | Sodium sulphid         |
| Chlorine, dry        | • | Methanol                             | 0         | Starc                  |
| Chlorine, wet        |   | Methyl chloride                      |           | Stean                  |
| Chromic acid         | Ó | Methylene dichloride                 | Ó         | Stearic aci            |
| Citric acid          | Ō | Methyl ethyl ketone                  | Ō         | Suga                   |
| Copper acetate       | Õ | Milk                                 | ō         | Sulphuric acid 20%     |
| Creosote             |   | Mineral oil type ASTM no.1           | 0         | Sulphuric acid 96%     |
| Cresol               |   | Naphtha                              |           | Та                     |
| Cvclohexapol         |   | Nitric acid 20%                      |           | Tartaric aci           |
| Cyclohexanone        |   | Nitric acid 40%                      |           | Toluen                 |
| Decelie              |   | Nitric acid 40%                      |           | Transformer ei         |
| Dibaamid atk         |   | Nitroborson                          |           | Trichlorothulan        |
| Dimethul forms       |   | Nitropenzene                         |           | inchorethylen          |
| Dimetnyl formamide   |   | Nitrogen                             |           | Wate                   |
| Dowtnerm             |   | Uctane                               |           | White spiri            |

Recommended
Recommendation depends on operating conditions
Not recommended

**INDUSTRIAL GASKETS** www.industrialgaskets.com.au sales@industrialgaskets.com.au , Ph- 08 82764140



