

DONIFLON® 2020

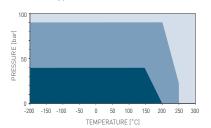
DONIFLON® 2020 is structurally enhanced PTFE gasket sheet filled with silica. It has outstanding chemical resistance to various media, same as DONIFLON® 900E; especially recommended for inorganic acids in all concentrations, except hydrofluoric acid. This material has enhanced creep performance compared to plain PTFE material. It is recommended for pharmaceutical and food industries as well as LNG & cryogenic applications.

PROPERTIES

APPROPRIATE INDUSTRIES & APPLICATIONS

0	GENERAL PURPOSE	3	PHARMACEUTICAL INDUSTRY
	POTABLE WATER SUPPLY	41	FOOD INDUSTRY
	STEAM SUPPLY	辮	REFRIGERATION AND COOLING
(1)	GAS SUPPLY	,	COMPRESSORS AND PUMPS
	CHEMICAL INDUSTRY		VALVES

PETROCHEMICAL INDUSTRY


Composition	PTFE, silica
Color	Pink
Approvals	BAM (Oxygen); EN 12308 (LNG & Cryogenic applications); EU No. 10/2011; FDA

TECHNICAL DATA Typical values for 2 mm thickness

Density	DIN 28090-2	g/cm³	2.1
Compressibility	ASTM F36J	%	7
Recovery	ASTM F36J	%	45
Tensile strength	ASTM F152	MPa	14
Stress resistance	DIN 52913		
30 MPa, 150 °C, 16 h		MPa	13
Specific leak rate	DIN 3535-6	mg/(s·m)	0.002
pH range			0-14
Operating conditions			
Minimum temperature		°C/°F	-200/-328
Maximum temperature		°C/°F	260/500
Pressure		bar/psi	80/1160

P-T DIAGRAM

EN 1514-1, Type IBC, PN 40, DIN 28091-2 / 3.8, 2.0 mm

- General suitability Under common installation practices and chemical compatibility
- Conditional suitability Appropriate measures ensure maximum performance for joint design and gasket installation. Technical consultation is recommended
- Limited suitability Technical consultation is mandatory

P-T diagram indicates the maximum permissible combination of internal pressure and service temperature which can be simultaneously applied for a given gasket's thickness, size and tightness class. Given the wide variety of gasket applications and service conditions, these values should only be regarded as a guidance for the proper gasket assembly. In general, thinner gaskets exhibit better P-T properties

Sheet dimesions

Size (mm): 1500 x 1500 Thickness (mm): 1.5 | 2.0 | 3.0

Other sizes and thicknesses available on request

Acetamide	+	Dioxane	+	Oleic acid
Acetic acid, 10%	+	Diphyl (Dowtherm A)	+	Oleum (Sulfur
Acetic acid, 100% (Glacial)	+	Esters	+	Oxalic acid
Acetone	+	Ethane (gas)	+	Oxygen (gas)
Acetonitrile	+	Ethers	+	Palmitic acid
Acetylene (gas)	+	Ethyl acetate	+	Paraffin oil
Acid chlorides	+	Ethyl alcohol (Ethanol)	+	Pentane
Acrylic acid	+	Ethyl cellulose	+	Perchloroethy
Acrylonitrile	+	Ethyl chloride (gas)	+	Petroleum (Ci
Adipic acid	+	Ethylene (gas)	+	Phenol (Carbo
Air (gas)	+	Ethylene glycol	+	Phosphoric ad
Alcohols	+	Formaldehyde (Formalin)	+	Phosphoric ad
Aldehydes	+	Formamide	+	Phthalic acid
Alum	+	Formic acid, 10%	+	Potassium ac
Aluminium acetate	+	Formic acid, 85%	+	Potassium bio
Aluminium chlorate	+	Formic acid, 100%	+	Potassium ca
Aluminium chloride	+	Freon-12 [R-12]	+	Potassium ch
Aluminium sulfate	+	Freon-134a (R-134a)	+	Potassium cy
Amines	+	Freon-22 [R-22]	+	Potassium die
Ammonia (gas)	+	Fruit juices	+	Potassium hy
Ammonium bicarbonate	+	Fuel oil	+	Potassium iod
Ammonium chloride	+	Gasoline	+	Potassium nit
Ammonium hydroxide	+	Gelatin	+	Potassium pe
Amyl acetate	+	Glycerine (Glycerol)	+	Propane (gas)
Anhydrides	+	Glycols	+	Propylene (ga
Aniline	+	Helium (gas)	+	Pyridine
Anisole	+	Heptane	+	Salicylic acid
Argon (gas)	+	Hydraulic oil (Glycol based)	+	Seawater/brir
Asphalt	+	Hydraulic oil (Mineral type)	+	Silicones (oil/
Barium chloride Benzaldehyde	+	Hydraulic oil [Phosphate ester based] Hydrazine	+	Soaps Sodium alum
Benzene	+	Hydrocarbons	+	Sodium bicarl
Benzoic acid	+	Hydrochloric acid, 10%	+	Sodium bisulf
Bio-diesel	+	Hydrochloric acid, 37%	+	Sodium carbo
Bio-ethanol	+	Hydrofluoric acid, 10%	÷	Sodium chlor
Black liquor	+	Hydrofluoric acid, 48%	-	Sodium cyani
Borax	+	Hydrogen (gas)	+	Sodium hydro
Boric acid	+	Iron sulfate	+	Sodium hypod
Butadiene (gas)	+	Isobutane (gas)	+	Sodium silica
Butane (gas)	+	Isooctane	+	Sodium sulfat
Butyl alcohol (Butanol)	+	Isoprene	+	Sodium sulfid
Butyric acid	+	Isopropyl alcohol (Isopropanol)	+	Starch
Calcium chloride	+	Kerosene	+	Steam
Calcium hydroxide	+	Ketones	+	Stearic acid
Carbon dioxide (gas)	+	Lactic acid	+	Styrene
Carbon monoxide (gas)	+	Lead acetate	+	Sugars
Cellosolve	+	Lead arsenate	+	Sulfur
Chlorine (gas)	+	Magnesium sulfate	+	Sulfur dioxide
Chlorine (in water)	+	Maleic acid	+	Sulfuric acid,
Chlorobenzene	+	Malic acid	+	Sulfuric acid,
Chloroform	+	Methane (gas)	+	Sulfuryl chlor
Chloroprene	+	Methyl alcohol (Methanol)	+	Tar
Chlorosilanes	+	Methyl chloride (gas)	+	Tartaric acid
Chromic acid Citric acid	+	Methylene dichloride	+	Tetrahydrofur
Copper acetate	+	Methyl ethyl ketone (MEK) N-Methyl-pyrrolidone (NMP)	+	Thionyl chlori Titanium tetra
Copper sulfate	+	Milk	+	Toluene
Creosote	$\overline{}$	Mineral oil (ASTM no.1)		2,4-Toluenedi
Cresols (Cresylic acid)	+	Motor oil	+	Transformer
Cyclohexane	+	Naphtha	+	Trichloroethyl
Cyclohexanol	+	Nitric acid, 10%	+	Vinegar
Cyclohexanone	+	Nitric acid, 65%	+	Vineyal Vinyl chloride
Decalin	+	Nitrobenzene	+	Vinylidene chl
Dextrin	+	Nitrogen (gas)	+	Water
Dibenzyl ether	+	Nitrous gases (NOx)	+	White spirits
Dibutyl phthalate	+	Octane	+	Xylenes
Dimethylacetamide (DMA)	+	Oils (Essential)	+	Xylenol
Dimethylformamide (DMF)	+	Oils (Vegetable)	+	Zinc sulfate

Oleic acid	
Oleum (Sulfuric acid, fuming)	I
Oxalic acid	
Oxygen (gas)	\perp
Palmitic acid	\perp
Paraffin oil	\perp
Pentane	+
Perchloroethylene	+
Petroleum (Crude oil) Phenol (Carbolic acid)	+
Phosphoric acid, 40%	+
Phosphoric acid, 85%	+
Phthalic acid	†
Potassium acetate	†
Potassium bicarbonate	†
Potassium carbonate	Ť
Potassium chloride	Ť
Potassium cyanide	T
Potassium dichromate	
Potassium hydroxide	
Potassium iodide	Ţ
Potassium nitrate	\perp
Potassium permanganate	4
Propane (gas)	+
Propylene (gas)	+
Pyridine	+
Salicylic acid	+
Seawater/brine	+
Silicones (oil/grease)	+
Soaps Sodium aluminate	+
Sodium bicarbonate	\dagger
Sodium bisulfite	$^{+}$
Sodium carbonate	†
Sodium chloride	†
Sodium cyanide	\dagger
Sodium hydroxide	T
Sodium hypochlorite (Bleach)	
Sodium silicate (Water glass)	
Sodium sulfate	1
Sodium sulfide	1
Starch	4
Steam	+
Stearic acid	+
Styrene	+
Sugars	+
Sulfur dioxida (gas)	+
Sulfur dioxide (gas)	+
Sulfuric acid, 20% Sulfuric acid, 75-98%, up to 260°C	+
Sulfuryl chloride	+
Tar	$^{+}$
Tartaric acid	†
Tetrahydrofuran (THF)	\dagger
Thionyl chloride	\dagger
Titanium tetrachloride	†
Toluene	\dagger
2,4-Toluenediisocyanate	\top
Transformer oil (Mineral type)	
Trichloroethylene	\perp
Vinegar	\perp
Vinyl chloride (gas)	1
Vinylidene chloride	

CHEMICAL RESISTANCE CHART

The recommendations made here are intended as a guideline for the selection of a suitable gasket type. As the function and durability of products are dependent upon a number of factors, the data may not be used to support any warranty claims. If there are specific type-approval regulations, these have to be complied with.

- Recommended
- Recommendation depends on operating conditions
- Not recommended

INDUSTRIAL GASKETS www.industrialgaskets.com.au sales@industrialgaskets.com.au, Ph- 08 8276 4140

For disclaimer please visit http://donit.eu/disclaimer/Copyright © DONIT TESNIT, d.o.o. All rights reserved

Date of issue: 05.2021 / TDS-D2020-09-2019

+